2.9.16.5. Quinto semestre

1. Datos Generales de la Unidad de Aprendizaje

Nombre de la Unidad de Aprendizaje	Clave	Semestre
OPERACIONES UNITARIAS I	CA5OU1	Quinto

Carácter	Obligatoria	Тіро	Teórica

Unidades de Aprendizaje antecedentes	Unidades de Aprendizaje consecuentes
Equilibrio y Cinética Química	Operaciones Unitarias II
	Elementos de Biorefinación
	Química de la Resina de Pino

Horas teóricas	Horas prácticas	Total de horas por semana	Semanas por semestre	Total de horas por semestre	Valor en créditos
5	0	5	16	80	5

Autores del programa	Fecha de elaboración		Fecha de aprobación en Consejo Técnico
M.C. Armando Muñiz Ramírez Ing. Ciro Hernández Alvarez	25 de enero de 2019		26 de Junio de 2019
Revisores del programa	Fecha de revisión	Porcentaje de ajuste	Fecha de aprobación en Consejo Técnico

2. Presentación de la Unidad de Aprendizaje

Justificación breve para contextualizar la UA

Conoce, comprende y analiza la dinámica de un fluido y de la transmisión de calor en la industria y los equipos requeridos para ello. Elabora e interpreta diagramas de flujo de proceso, aplica los principios de balance de materia y energía en ejemplos de procesos industriales relacionados con la transformación física y química de la madera.

Propuesta didáctico-metodológica

Presencial:

Resolución de ejercicios prácticos

Visita a laboratorios, proveedores de equipo y/o industrias

Virtual:

Repaso de temas relacionados con procesos industriales, conversión de unidades y termodinámica.

Elaboración de diagramas de flujo de proceso en autocad o afin

Manejo de hoja de cálculo

Descripción de actividades específicas en las que incorporará al menos dos de los tópicos de formación integral: identidad nicolaita, derechos humanos, responsabilidad social, transparencia, ética, cultura de la paz

En la industria es necesario conocer los equipos y llevar a cabo una serie de operaciones para transformar la materia prima y obtener un producto, por lo que es necesario comprender el comportamiento de un fluido cuando es conducido por un ducto, ya que permite elegir adecuadamente el material y equipo de un sistema de bombeo; con ello se reducen los riesgos de contaminación por derrames o fugas y ruido del equipo (Derechos humanos, responsabilidad social, ética)
El balance de materia y energía de un proceso de transformación sirve como base para el escalamiento y optimización de los

mismos. (Responsabilidad social y ética).

3. Competencias a desarrollar

Eje curricular

Ciencias Aplicadas.

Competencias genéricas

Aplica los principios teóricos de las tecnologías tradicionales y emergentes para la transformación de recursos forestales, maderables y no maderables, con creatividad y responsabilidad social.

Fundamenta los procesos de transformación de los productos maderables y no maderables en los conocimientos teóricos de las ciencias básicas, con responsabilidad social.

Competencias específicas

Resuelve problemas relacionados con los procesos de transformación física y química de productos forestales maderables y no maderables con ética.

Diseña, implementa y administra sistemas de abastecimiento, procesos de transformación y estrategias de comercialización de productos maderables y no maderables, con impacto social.

4. Perfil académico del docente

Grado académico:	Licenciatura en: Ingeniería en Tecnología de la Madera, Ingeniería Química, Ingeniería Mecánica, Ingeniería de procesos, Ingeniería en Bioquímica
Experiencia:	Conocimientos de procesos de transformación física y química de la madera, docencia

5. Temas y subtemas

Temas	Subtemas
1. Transporte de fluidos	 1.1. Introducción 1.2. Ecuaciones de flujo (continuidad, Bernoulli, Torricelli, venturi, Reynolds) 1.3. Pérdidas por fricción, longitud equivalente, factor de fricción 1.4. Diámetro equivalente 1.5. Conducciones en paralelo y ramificadas, tiempo y velocidad máxima de descarga 1.6. Fluidos compresibles 1.7. Flujo adiabático 1.8. Medidores: a) Manómetro diferencial, invertido, de dos líquidos e inclinado b) Tubo Venturi c) Diafragmas y boquillas d) Tubo de Pitot e) Rotámetro

	2.1. Conducción de calor
	2.2. A través de paredes y espesor de aislante
	2.3. Convección de calor
	2.4. Fluidos en el interior y en el exterior de los tubos
	2.5. Convección natural y condensación de vapores
	2.6. Radiación de calor
2. Transporte de calor	2.7. Cuerpos negros y coeficiente de forma
	2.8. Radiación de gases incondensables
	2.9. Transmisión de calor conjunta por conducción
	2.10. Cambiadores de calor
	2.11. Coeficiente integral de transmisión de calor
	2.12. Eficiencia de un cambiador de calor
	3.1. Definición
	3.2. Tipos de evaporadores
	3.3. Variables de operación en los evaporadores
	3.4. Balance de materia y energía en evaporadores de simple efecto
	3.5. Cálculo de área de calentamiento en un evaporador
	3.6. Cálculo del número de tubos en un evaporador
3. Evaporación	3.7. Efecto de la velocidad de la solución dentro de los tubos
3. Evaporación	3.8. Efecto de la presión del vapor de calentamiento
	3.9. Elevación en el punto de ebullición
	3.10. Efecto de la altura del evaporador
	3.11. Efecto flash
	3.12. Eficiencia y economía de un evaporador
	3.13. Balance de materia y energía en evaporadores de múltiple efecto
	3.14. Instrumentación y operación segura

4.1. Generalidades 4.2. Equipos de filtración 4.3. Filtración a presión constante 4.4. Filtración a velocidad constante 4.5. Capacidad de filtración y condiciones óptimas 4.6. Balances de materia y energía

6. Criterios de evaluación.

CRITERIOS A EVALUAR (se integrarán los formatos de rúbrica, de lista de cotejo, etc., que se requieran)	PORCENTAJE
Exámenes	50
Uso de software	30
Participación en clase y exposiciones	20
Porcentaje final	100

7. Fuentes de información.

Básica:

- 1. Mc Cabe, W. L. (2007). Operaciones Unitarias en Ingeniería Química. 7ª edición. McGraw Hill.
- 2. Kern, D. Q. (2007). Procesos de transferencia de calor. Patria.
- 3. Foust, R. (2006). Principios de operaciones unitarias. 1º edición. CECSA.
- 4. Felder, M. R. (2006). Principios Fundamentales de los Procesos Químicos. 3ª edición. Limusa–Wiley.
- 5. Treybal, R. E. (1988). Operaciones de Transferencia de Masa. 2ª edición. McGraw Hill.
- 6. Ocon, G. J. (1978). Problemas de Ingeniería Química, 1º edición. Editorial Aguilar.
- 7. Cengel, Y., & Boles, M. (2006). *Termodinámica*. 5ª edición. McGraw-Hill.

Complementaria:

- 1. Badger, W. L. (1955). Introduction to Chemical Engineering. McGraw Hill.
- 2. Coulson. J. M., R. J. (1982). Ingeniería Química. Ediciones Reverté.
- 3. Kirk, &. O. (1988). Enciclopedia de Ingeniería Química. 1ª edición. Limusa.